Resource downloads
15 Jul 2017
This page provides links to download many of the resources (datasets, scripts and presentations) used throughout the workshop and tutorial series. The datasets and scripts are organized according to topics that reflect the main contents page. Zipped versions of these resources are also available.
Presentations
The tutorial and workshop materials are also accompanied by a set of associated presentations. These presentations are available in two formats:
- live html (browser based). Note these often include embedded Mathjax and do not render well on Internet Explorer.
- pdf versions for download and printing.
Course intro
Topic 0 - Course intro
«Download pdf version»
«Download pdf notes version»
«Goto Presentation»
«Goto R script»
Topics covered
- Schedule
- Preparation
- R Editors
- Reproducible research
- Cheatsheets
«Goto Presentation»
«Goto R script»
R syntax
Topic 1 - R basics
«Download pdf version»
«Download pdf notes version»
«Goto Presentation»
«Goto R script»
Topics covered
- Basic syntax
- Data types
- Object manipulation
- R Editors
- Package management
- Reproducible research
«Goto Presentation»
«Goto R script»
Topic 2 - R Dataframes and data manipulation
Topic 3 - More advanced R
Introductory statistical principles
Topic 4 - Basic statistics
«Goto PDF»
«Goto Notes»
«Goto Presentation»
«Goto R script»
Topics covered
- Estimation
- Probability theory
- Frequentist hypothesis testing
- Exploratory data analysis
«Goto PDF»
«Goto Presentation»
«Goto R script»
R data summaries - numerical and graphical
Topic 5 - Graphics
Statistical modeling
Topic 6 - Simple hypothesis testing
Topic 7 - Linear models
Topic 8 - Heterogeneity and autocorrelation
Topic 9 - Linear mixed effects models
Topic 10 - Frequency analyses and generalized linear models
Topic 11 - Generalized linear mixed models
Topic 12 - Non-linear models
Topics covered
- Polynomial models Bayesian (P, N, S, R) (P, N, S, R)
- Non-linear models Bayesian (P, N, S, R) (P, N, S, R)
- Lowess (loess) regression Bayesian (P, N, S, R) (P, N, S, R)
- Piecewise regression Bayesian (P, N, S, R) (P, N, S, R)
- Splines Bayesian (P, N, S, R) (P, N, S, R)
- Generalized additive models
- Classification and regression trees
Multivariate analyses
Topic 13 - Multivatiate data
Topic 14 - R-mode analyses
Topic 15 - Q-mode analyses
I have yet to implement individual file links yet. I guess you will just have to download all of them from above.