Link: \(log\left(\frac{\pi}{1-\pi}\right)\)
Transform scale of linear predictor (\(-\infty,\infty\)) into that of the response (0,1)
Spread assumed to be equal to mean. (\(\phi = 1\))
Sample more varied than expected from its mean
Example data
y x
1 0 1.024733
2 0 2.696719
3 0 3.626263
4 0 4.948643
5 0 6.024718
6 0 6.254113
> dat.glmL <- glm(y ~ x, data = dat, family = "binomial")
> par(mfrow=c(2,2))
> plot(dat.glmL)
> dat.resid <- sum(resid(dat.glmL, type = "pearson")^2)
> 1 - pchisq(dat.resid, dat.glmL$df.resid)
[1] 0.8571451
> 1-pchisq(dat.glmL$deviance, dat.glmL$df.resid)
[1] 0.8647024
Slope parameter is on log odds-ratio scale
> summary(dat.glmL)
Call:
glm(formula = y ~ x, family = "binomial", data = dat)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.97157 -0.33665 -0.08191 0.30035 1.59628
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -6.9899 3.1599 -2.212 0.0270 *
x 0.6559 0.2936 2.234 0.0255 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 27.526 on 19 degrees of freedom
Residual deviance: 11.651 on 18 degrees of freedom
AIC: 15.651
Number of Fisher Scoring iterations: 6
> 1-(dat.glmL$deviance/dat.glmL$null)
[1] 0.5767057
> -dat.glmL$coef[1]/dat.glmL$coef[2]
(Intercept)
10.65781