3 |
0 |
2.5 |
1 |
6 |
2 |
5.5 |
3 |
9 |
4 |
8.6 |
5 |
12 |
6 |
\[
\begin{alignat*}{4}
3.0\quad&=\quad&\beta_0\times 1\quad&+\quad&\beta_1\times 0\quad&+\quad&\varepsilon_1\\
2.5\quad&=\quad&\beta_0\times 1\quad&+\quad&\beta_1\times 1\quad&+\quad&\varepsilon_1\\
6.0\quad&=\quad&\beta_0\times 1\quad&+\quad&\beta_1\times 2\quad&+\quad&\varepsilon_2\\
5.5\quad&=\quad&\beta_0\times 1\quad&+\quad&\beta_1\times 3\quad&+\quad&\varepsilon_3\\
9.0\quad&=\quad&\beta_0\times 1\quad&+\quad&\beta_1\times 4\quad&+\quad&\varepsilon_4\\
8.6\quad&=\quad&\beta_0\times 1\quad&+\quad&\beta_1\times 5\quad&+\quad&\varepsilon_5\\
12.0\quad&=\quad&\beta_0\times 1\quad&+\quad&\beta_1\times 6\quad&+\quad&\varepsilon_6\\
\end{alignat*}
\]
|
Estimation
\[
\begin{alignat*}{4}
3.0\quad&=\quad&\beta_0\times 1\quad&+\quad&\beta_1\times 0\quad&+\quad&\varepsilon_1\\
2.5\quad&=\quad&\beta_0\times 1\quad&+\quad&\beta_1\times 1\quad&+\quad&\varepsilon_1\\
6.0\quad&=\quad&\beta_0\times 1\quad&+\quad&\beta_1\times 2\quad&+\quad&\varepsilon_2\\
5.5\quad&=\quad&\beta_0\times 1\quad&+\quad&\beta_1\times 3\quad&+\quad&\varepsilon_3\\
9.0\quad&=\quad&\beta_0\times 1\quad&+\quad&\beta_1\times 4\quad&+\quad&\varepsilon_4\\
8.6\quad&=\quad&\beta_0\times 1\quad&+\quad&\beta_1\times 5\quad&+\quad&\varepsilon_5\\
12.0\quad&=\quad&\beta_0\times 1\quad&+\quad&\beta_1\times 6\quad&+\quad&\varepsilon_6\\
\end{alignat*}
\]
|
\[\underbrace{\begin{pmatrix}
3.0\\2.5\\6.0\\5.5\\9.0\\8.6\\12.0
\end{pmatrix}}_\text{Response values} =
\underbrace{\begin{pmatrix}
1&0\\1&1\\1&2\\1&3\\1&4\\1&5\\1&6
\end{pmatrix}}_\text{Model matrix} \times
\underbrace{\begin{pmatrix}
\beta_0\\\beta_1
\end{pmatrix}}_\text{Parameter vector} +
\underbrace{\begin{pmatrix}
\varepsilon_1\\\varepsilon_2\\\varepsilon_3\\\varepsilon_4&\\\varepsilon_5\\\varepsilon_6
\end{pmatrix}}_\text{Residual vector}
\]
Matrix algebra
\[\underbrace{\begin{pmatrix}
3.0\\2.5\\6.0\\5.5\\9.0\\8.6\\12.0
\end{pmatrix}}_\text{Response values} =
\underbrace{\begin{pmatrix}
1&0\\1&1\\1&2\\1&3\\1&4\\1&5\\1&6
\end{pmatrix}}_\text{Model matrix} \times
\underbrace{\begin{pmatrix}
\beta_0\\\beta_1
\end{pmatrix}}_\text{Parameter vector} +
\underbrace{\begin{pmatrix}
\varepsilon_1\\\varepsilon_2\\\varepsilon_3\\\varepsilon_4&\\\varepsilon_5\\\varepsilon_6
\end{pmatrix}}_\text{Residual vector}
\]
\[
Y = X\beta+\epsilon
\]
\[
\hat\beta = (X'X)^{-1}X'Y
\]
Simple ANOVA
Three treatments (One factor - 3 levels), three replicates
Simple ANOVA
Two treatments, three replicates
Categorical predictor
Y A dummy1 dummy2 dummy3
--- --- -------- -------- --------
2 G1 1 0 0
3 G1 1 0 0
4 G1 1 0 0
6 G2 0 1 0
7 G2 0 1 0
8 G2 0 1 0
10 G3 0 0 1
11 G3 0 0 1
12 G3 0 0 1
\[y_{ij}=\mu+\beta_1(dummy_1)_{ij} + \beta_2(dummy_2)_{ij} +\beta_3(dummy_3)_{ij} + \varepsilon_{ij}\]
Overparameterized
\[y_{ij}=\color{darkorange}{\mu}+\color{darkorange}{\beta_1}(dummy_1)_{ij} + \color{darkorange}{\beta_2}(dummy_2)_{ij} +\color{darkorange}{\beta_3}(dummy_3)_{ij} + \varepsilon_{ij}\]
Y A Intercept dummy1 dummy2 dummy3
--- --- ----------- -------- -------- --------
2 G1 1 1 0 0
3 G1 1 1 0 0
4 G1 1 1 0 0
6 G2 1 0 1 0
7 G2 1 0 1 0
8 G2 1 0 1 0
10 G3 1 0 0 1
11 G3 1 0 0 1
12 G3 1 0 0 1
Overparameterized
\[y_{ij}=\color{darkorange}{\mu}+\color{darkorange}{\beta_1}(dummy_1)_{ij} + \color{darkorange}{\beta_2}(dummy_2)_{ij} +\color{darkorange}{\beta_3}(dummy_3)_{ij} + \varepsilon_{ij}\]
- three treatment groups
- four parameters to estimate
- need to re-parameterize
Categorical predictor
\[y_{i}=\mu+\beta_1(dummy_1)_{i} + \beta_2(dummy_2)_{} +\beta_3(dummy_3)_{i} + \varepsilon_{i}\]
Means parameterization
\[y_{i}=\beta_1(dummy_1)_{i} + \beta_2(dummy_2)_{i} +\beta_3(dummy_3)_{i} + \varepsilon_{ij}\] \[y_{ij}=\alpha_i + \varepsilon_{ij} \quad \mathsf{i=p}\]
Categorical predictor
Means parameterization
\[y_{i}=\beta_1(dummy_1)_{i} + \beta_2(dummy_2)_{i} +\beta_3(dummy_3)_{i} + \varepsilon_{i}\]
Y A dummy1 dummy2 dummy3
--- --- -------- -------- --------
2 G1 1 0 0
3 G1 1 0 0
4 G1 1 0 0
6 G2 0 1 0
7 G2 0 1 0
8 G2 0 1 0
10 G3 0 0 1
11 G3 0 0 1
12 G3 0 0 1
Categorical predictor
Means parameterization
Raw data
|
|
Matrix representation
|
y
|
A
|
2
|
G1
|
3
|
G1
|
4
|
G1
|
6
|
G2
|
7
|
G2
|
8
|
G2
|
10
|
G3
|
11
|
G3
|
12
|
G3
|
|
|
\[
y_i = \alpha_1 D_{1i} + \alpha_2 D_{2i} + \alpha_3 D_{3i} + \varepsilon_i\\
y_i = \alpha_p+\varepsilon_i, \\ \text{where}~p= \text{number of levels of the factor}\\\text{and } D = \text{dummy variables}\] \[\begin{pmatrix}
2\\3\\4\\6\\7\\8\\10\\11\\12
\end{pmatrix} =
\begin{pmatrix}
1&0&0\\1&0&0\\1&0&0\\0&1&0\\0&1&0\\0&1&0\\0&0&1\\0&0&1\\0&0&1
\end{pmatrix} \times
\begin{pmatrix}
\alpha_1\\\alpha_2\\\alpha_3
\end{pmatrix} +
\begin{pmatrix}
\varepsilon_1\\\varepsilon_2\\\varepsilon_3\\\varepsilon_4&\\\varepsilon_5\\\varepsilon_6\\\varepsilon_7&\\\varepsilon_8\\\varepsilon_9
\end{pmatrix}
\]
|
\[\alpha_1 = 3, \alpha_2 = 7, \alpha_3 = 11\]
Categorical predictor
Means parameterization
Parameter
|
Estimates
|
Null hypothesis
|
\(\alpha^*_1\)
|
mean of group 1
|
H\(_0\): \(\alpha_1=\alpha_1=0\)
|
\(\alpha^*_2\)
|
mean of group 2
|
H\(_0\): \(\alpha_2=\alpha_2=0\)
|
\(\alpha^*_3\)
|
mean of group 3
|
H\(_0\): \(\alpha_3=\alpha_3=0\)
|
…
| |
|
> summary(lm(Y~-1+A))$coef
Estimate Std. Error t value Pr(>|t|)
AG1 3 0.5773503 5.196152 2.022368e-03
AG2 7 0.5773503 12.124356 1.913030e-05
AG3 11 0.5773503 19.052559 1.351732e-06
- but typically interested exploring effects
Categorical predictor
\[y_{i}=\mu+\beta_1(dummy_1)_{i} + \beta_2(dummy_2)_{i} +\beta_3(dummy_3)_{i} + \varepsilon_{i}\]
Effects parameterization
\[y_{ij}=\mu+\beta_2(dummy_2)_{ij} + \beta_3(dummy_3)_{ij} + \varepsilon_{ij}\] \[y_{ij}=\mu + \alpha_i + \varepsilon_{ij} \qquad \mathsf{i=p-1}\]
Categorical predictor
Effects parameterization
\[y_{i}=\alpha + \beta_2(dummy_2)_{i} +\beta_3(dummy_3)_{i} + \varepsilon_{i}\]
Y A alpha dummy2 dummy3
--- --- ------- -------- --------
2 G1 1 0 0
3 G1 1 0 0
4 G1 1 0 0
6 G2 1 1 0
7 G2 1 1 0
8 G2 1 1 0
10 G3 1 0 1
11 G3 1 0 1
12 G3 1 0 1
Categorical predictor
Effects parameterization
Raw data
|
|
Matrix representation
|
y
|
A
|
2
|
G1
|
3
|
G1
|
4
|
G1
|
6
|
G2
|
7
|
G2
|
8
|
G2
|
10
|
G3
|
11
|
G3
|
12
|
G3
|
|
|
\[y_i = \mu + \alpha_p+\varepsilon_i, \\ \text{where}~p= \text{number of levels minus 1}\] \[\begin{pmatrix}
2\\3\\4\\6\\7\\8\\10\\11\\12
\end{pmatrix} =
\begin{pmatrix}
1&0&0\\1&0&0\\1&0&0\\1&1&0\\1&1&0\\1&1&0\\1&0&1\\1&0&1\\1&0&1
\end{pmatrix} \times
\begin{pmatrix}
\mu\\\alpha_2\\\alpha_3
\end{pmatrix} +
\begin{pmatrix}
\varepsilon_1\\\varepsilon_2\\\varepsilon_3\\\varepsilon_4&\\\varepsilon_5\\\varepsilon_6\\\varepsilon_7&\\\varepsilon_8\\\varepsilon_9
\end{pmatrix}
\]
|
\[\alpha_1 = 3, \alpha_2 = 4, \alpha_3 = 8\]
Categorical predictor
Treatment contrasts
Parameter
|
Estimates
|
Null hypothesis
|
\(Intercept\)
|
mean of control group (\(\mu_1\))
|
H\(_0\): \(\mu=\mu_1=0\)
|
\(\alpha^*_2\)
|
mean of group 2 minus mean of control group (\(\mu_2-\mu_1\))
|
H\(_0\): \(\alpha^*_2=\mu_2-\mu_1=0\)
|
\(\alpha^*_3\)
|
mean of group 3 minus mean of control group (\(\mu_3-\mu_1\))
|
H\(_0\): \(\alpha^*_3=\mu_3-\mu_1=0\)
|
…
| |
|
> contrasts(A) <-contr.treatment
> contrasts(A)
2 3
G1 0 0
G2 1 0
G3 0 1
> summary(lm(Y~A))$coef
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3 0.5773503 5.196152 2.022368e-03
A2 4 0.8164966 4.898979 2.713682e-03
A3 8 0.8164966 9.797959 6.506149e-05
Categorical predictor
Treatment contrasts
Parameter
|
Estimates
|
Null hypothesis
|
\(Intercept\)
|
mean of control group (\(\mu_1\))
|
H\(_0\): \(\mu=\mu_1=0\)
|
\(\alpha^*_2\)
|
mean of group 2 minus mean of control group (\(\mu_2-\mu_1\))
|
H\(_0\): \(\alpha^*_2=\mu_2-\mu_1=0\)
|
\(\alpha^*_3\)
|
mean of group 3 minus mean of control group (\(\mu_3-\mu_1\))
|
H\(_0\): \(\alpha^*_3=\mu_3-\mu_1=0\)
|
…
| |
|
> summary(lm(Y~A))$coef
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3 0.5773503 5.196152 2.022368e-03
A2 4 0.8164966 4.898979 2.713682e-03
A3 8 0.8164966 9.797959 6.506149e-05
Categorical predictor
User defined contrasts
User defined contrasts Grp2 vs Grp3 Grp1 vs (Grp2 & Grp3)
|
Grp1
|
Grp2
|
Grp3
|
\(\alpha_2\)
|
0
|
1
|
-1
|
\(\alpha_3\)
|
1
|
-0.5
|
-0.5
|
> contrasts(A) <- cbind(c(0,1,-1),c(1, -0.5, -0.5))
> contrasts(A)
[,1] [,2]
G1 0 1.0
G2 1 -0.5
G3 -1 -0.5
Categorical predictor
User defined contrasts
- \(p -1\) comparisons (contrasts)
- all contrasts must be orthogonal
Categorical predictor
Orthogonality
Four groups (A, B, C, D)
\(p-1=3~\) comparisons
- A vs B :: A \(>\) B
- B vs C :: B \(>\) C
- A vs C ::
Categorical predictor
User defined contrasts
> contrasts(A) <- cbind(c(0,1,-1),c(1, -0.5, -0.5))
> contrasts(A)
[,1] [,2]
G1 0 1.0
G2 1 -0.5
G3 -1 -0.5
\[
\begin{array}{rcl}
0\times 1.0 &=& 0\\
1\times -0.5 &=& -0.5\\
-1\times -0.5 &=& 0.5\\
sum &=& 0
\end{array}
\]
Categorical predictor
User defined contrasts
> contrasts(A) <- cbind(c(0,1,-1),c(1, -0.5, -0.5))
> contrasts(A)
[,1] [,2]
G1 0 1.0
G2 1 -0.5
G3 -1 -0.5
> crossprod(contrasts(A))
[,1] [,2]
[1,] 2 0.0
[2,] 0 1.5
> summary(lm(Y~A))$coef
Estimate Std. Error t value Pr(>|t|)
(Intercept) 7 0.3333333 21.000000 7.595904e-07
A1 -2 0.4082483 -4.898979 2.713682e-03
A2 -4 0.4714045 -8.485281 1.465426e-04
Categorical predictor
User defined contrasts
> contrasts(A) <- cbind(c(1, -0.5, -0.5),c(1,-1,0))
> contrasts(A)
[,1] [,2]
G1 1.0 1
G2 -0.5 -1
G3 -0.5 0
> crossprod(contrasts(A))
[,1] [,2]
[1,] 1.5 1.5
[2,] 1.5 2.0
Partitioning of variance (ANOVA)
ANOVA
Partitioning variance
ANOVA
Partitioning variance
> anova(lm(Y~A))
Analysis of Variance Table
Response: Y
Df Sum Sq Mean Sq F value Pr(>F)
A 2 96 48 48 0.0002035 ***
Residuals 6 6 1
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Categorical predictor
Post-hoc comparisons
No. of Groups
|
No. of comparisons
|
Familywise Type I error probability
|
3
|
3
|
0.14
|
5
|
10
|
0.40
|
10
|
45
|
0.90
|
Categorical predictor
Post-hoc comparisons
Bonferoni
> summary(lm(Y~A))$coef
Estimate Std. Error t value Pr(>|t|)
(Intercept) 7 0.3333333 21.000000 7.595904e-07
A1 -8 0.9428090 -8.485281 1.465426e-04
A2 4 0.8164966 4.898979 2.713682e-03
> 0.05/3
[1] 0.01666667
Categorical predictor
Post-hoc comparisons
Tukey’s test
> library(multcomp)
> data.lm<-lm(Y~A)
> summary(glht(data.lm, linfct=mcp(A="Tukey")))
Simultaneous Tests for General Linear Hypotheses
Multiple Comparisons of Means: Tukey Contrasts
Fit: lm(formula = Y ~ A)
Linear Hypotheses:
Estimate Std. Error t value Pr(>|t|)
G2 - G1 == 0 4.0000 0.8165 4.899 0.00653 **
G3 - G1 == 0 8.0000 0.8165 9.798 < 0.001 ***
G3 - G2 == 0 4.0000 0.8165 4.899 0.00679 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- single-step method)
Assumptions
- Normality
- Homogeneity of variance
- Independence
Worked Examples
Format of day.csv data files
|
TREAT
|
BARNACLE
|
ALG1
|
27
|
..
|
..
|
ALG2
|
24
|
..
|
..
|
NB
|
9
|
..
|
..
|
S
|
12
|
..
|
..
|
TREAT
|
Categorical listing of surface types. ALG1 = algal species 1, ALG2 = algal species 2, NB = naturally bare surface, S = scraped bare surface.
|
BARNACLE
|
The number of newly recruited barnacles on each plot after 4 weeks.
|
|
|
> day <- read.csv('../data/day.csv', strip.white=T)
> head(day)
TREAT BARNACLE
1 ALG1 27
2 ALG1 19
3 ALG1 18
4 ALG1 23
5 ALG1 25
6 ALG2 24
Worked Examples
Question: what effects do different substrate types have on barnacle recruitment
Linear model:
\[
Barnacle_{i} = \mu + \alpha_j +\varepsilon_i \hspace{1cm} \varepsilon \sim{} \mathcal{N}(0, \sigma^2)
\]
Worked Examples
Format of partridge.csv data files
|
GROUP
|
LONGEVITY
|
PREG8
|
35
|
..
|
..
|
NON0
|
40
|
..
|
..
|
PREG1
|
46
|
..
|
..
|
VIRGIN1
|
21
|
..
|
..
|
VIRGIN8
|
16
|
..
|
..
|
GROUP
|
Categorical listing of female partner type. PREG1 = 1 pregnant partner, NONE0 = no female partners, PREG8 = 8 pregnant partners, VIRGIN1 = 1 virgin partner, VIRGIN8 = 8 virgin partners. Groups 1,2,3 - Control groups Groups 4,5 - Experimental groups.
|
LONGEVITY
|
Longevity of male fruitflies (days)
|
|
|
> partridge <- read.csv('../data/partridge.csv', strip.white=T)
> head(partridge)
GROUP LONGEVITY
1 PREG8 35
2 PREG8 37
3 PREG8 49
4 PREG8 46
5 PREG8 63
6 PREG8 39
> str(partridge)
'data.frame': 125 obs. of 2 variables:
$ GROUP : Factor w/ 5 levels "NONE0","PREG1",..: 3 3 3 3 3 3 3 3 3 3 ...
$ LONGEVITY: int 35 37 49 46 63 39 46 56 63 65 ...
Worked Examples
Question: what effects does mating have on the longevity of male fruitflies
Linear model:
\[
Longevity_{i} = \mu + \alpha_j +\varepsilon_i \hspace{1cm} \varepsilon \sim{} \mathcal{N}(0, \sigma^2)
\]
|