Download the macnally.csv
file
Make sure you know where you have put it!
Download the macnally.csv
file
OR
> download.file('http://www.flutterbys.com.au/stats/downloads/data/macnally.csv',
+ '~/macnally.csv')
> getwd()
[1] "/home/murray/Work/SUYR/downloads/slides"
> getwd()
[1] "/home/murray/Work/SUYR/downloads/slides"
> #Go to a subdirectory of the current directory
> setwd('data')
> #Go to the parent directory
> setwd('..')
> #Go to a sibling directory
> setwd('../data')
,HABITAT,GST,EYR Reedy Lake,Mixed,3.4,0.0 Pearcedale,Gipps.Manna,3.4,9.2 Warneet,Gipps.Manna,8.4,3.8 Cranbourne,Gipps.Manna,3.0,5.0 ....
> MACNALLY <- read.csv(
+ '/home/murray/Work/SUYR/downloads/data/macnally.csv',
+ header=T, row.names=1, strip.white=TRUE)
> MACNALLY
HABITAT GST EYR
Reedy Lake Mixed 3.4 0.0
Pearcedale Gipps.Manna 3.4 9.2
Warneet Gipps.Manna 8.4 3.8
Cranbourne Gipps.Manna 3.0 5.0
Lysterfield Mixed 5.6 5.6
Red Hill Mixed 8.1 4.1
Devilbend Mixed 8.3 7.1
Olinda Mixed 4.6 5.3
Fern Tree Gum Montane Forest 3.2 5.2
Sherwin Foothills Woodland 4.6 1.2
Heathcote Ju Montane Forest 3.7 2.5
Warburton Montane Forest 3.8 6.5
Millgrove Mixed 5.4 6.5
Ben Cairn Mixed 3.1 9.3
Panton Gap Montane Forest 3.8 3.8
OShannassy Mixed 9.6 4.0
Ghin Ghin Mixed 3.4 2.7
Minto Mixed 5.6 3.3
Hawke Mixed 1.7 2.6
St Andrews Foothills Woodland 4.7 3.6
Nepean Foothills Woodland 14.0 5.6
Cape Schanck Mixed 6.0 4.9
Balnarring Mixed 4.1 4.9
Bittern Gipps.Manna 6.5 9.7
Bailieston Box-Ironbark 6.5 2.5
Donna Buang Mixed 1.5 0.0
Upper Yarra Mixed 4.7 3.1
Gembrook Mixed 7.5 7.5
Arcadia River Red Gum 3.1 0.0
Undera River Red Gum 2.7 0.0
Coomboona River Red Gum 4.4 0.0
Toolamba River Red Gum 3.0 0.0
Rushworth Box-Ironbark 2.1 1.1
Sayers Box-Ironbark 2.6 0.0
Waranga Mixed 3.0 1.6
Costerfield Box-Ironbark 7.1 2.2
Tallarook Foothills Woodland 4.3 2.9
,HABITAT,GST,EYR Reedy Lake,Mixed,3.4,0.0 Pearcedale,Gipps.Manna,3.4,9.2 Warneet,Gipps.Manna,8.4,3.8 Cranbourne,Gipps.Manna,3.0,5.0 ....
> MACNALLY <- read.csv('../data/macnally.csv',
+ header=T, row.names=1, strip.white=TRUE)
> getwd() #to see the current working directory
[1] "/home/murray/Work/SUYR/downloads/slides"
> MACNALLY
HABITAT GST EYR
Reedy Lake Mixed 3.4 0.0
Pearcedale Gipps.Manna 3.4 9.2
Warneet Gipps.Manna 8.4 3.8
Cranbourne Gipps.Manna 3.0 5.0
Lysterfield Mixed 5.6 5.6
Red Hill Mixed 8.1 4.1
Devilbend Mixed 8.3 7.1
Olinda Mixed 4.6 5.3
Fern Tree Gum Montane Forest 3.2 5.2
Sherwin Foothills Woodland 4.6 1.2
Heathcote Ju Montane Forest 3.7 2.5
Warburton Montane Forest 3.8 6.5
Millgrove Mixed 5.4 6.5
Ben Cairn Mixed 3.1 9.3
Panton Gap Montane Forest 3.8 3.8
OShannassy Mixed 9.6 4.0
Ghin Ghin Mixed 3.4 2.7
Minto Mixed 5.6 3.3
Hawke Mixed 1.7 2.6
St Andrews Foothills Woodland 4.7 3.6
Nepean Foothills Woodland 14.0 5.6
Cape Schanck Mixed 6.0 4.9
Balnarring Mixed 4.1 4.9
Bittern Gipps.Manna 6.5 9.7
Bailieston Box-Ironbark 6.5 2.5
Donna Buang Mixed 1.5 0.0
Upper Yarra Mixed 4.7 3.1
Gembrook Mixed 7.5 7.5
Arcadia River Red Gum 3.1 0.0
Undera River Red Gum 2.7 0.0
Coomboona River Red Gum 4.4 0.0
Toolamba River Red Gum 3.0 0.0
Rushworth Box-Ironbark 2.1 1.1
Sayers Box-Ironbark 2.6 0.0
Waranga Mixed 3.0 1.6
Costerfield Box-Ironbark 7.1 2.2
Tallarook Foothills Woodland 4.3 2.9
HABITAT GST EYR Reedy Lake Mixed 3.4 0.0 Pearcedale Gipps.Manna 3.4 9.2 Warneet Gipps.Manna 8.4 3.8 Cranbourne Gipps.Manna 3.0 5.0 ....
Relative path
> MACNALLY <- read.table('../data/macnally.txt',
+ header=T, row.names=1, sep='\t', strip.white=TRUE)
> MACNALLY
HABITAT GST EYR
Reedy Lake Mixed 3.4 0.0
Pearcedale Gipps.Manna 3.4 9.2
Warneet Gipps.Manna 8.4 3.8
Cranbourne Gipps.Manna 3.0 5.0
Lysterfield Mixed 5.6 5.6
Red Hill Mixed 8.1 4.1
Devilbend Mixed 8.3 7.1
Olinda Mixed 4.6 5.3
Fern Tree Gum Montane Forest 3.2 5.2
Sherwin Foothills Woodland 4.6 1.2
Heathcote Ju Montane Forest 3.7 2.5
Warburton Montane Forest 3.8 6.5
Millgrove Mixed 5.4 6.5
Ben Cairn Mixed 3.1 9.3
Panton Gap Montane Forest 3.8 3.8
OShannassy Mixed 9.6 4.0
Ghin Ghin Mixed 3.4 2.7
Minto Mixed 5.6 3.3
Hawke Mixed 1.7 2.6
St Andrews Foothills Woodland 4.7 3.6
Nepean Foothills Woodland 14.0 5.6
Cape Schanck Mixed 6.0 4.9
Balnarring Mixed 4.1 4.9
Bittern Gipps.Manna 6.5 9.7
Bailieston Box-Ironbark 6.5 2.5
Donna Buang Mixed 1.5 0.0
Upper Yarra Mixed 4.7 3.1
Gembrook Mixed 7.5 7.5
Arcadia River Red Gum 3.1 0.0
Undera River Red Gum 2.7 0.0
Coomboona River Red Gum 4.4 0.0
Toolamba River Red Gum 3.0 0.0
Rushworth Box-Ironbark 2.1 1.1
Sayers Box-Ironbark 2.6 0.0
Waranga Mixed 3.0 1.6
Costerfield Box-Ironbark 7.1 2.2
Tallarook Foothills Woodland 4.3 2.9
> write.table(MACNALLY, '../data/macnally.csv',
+ quote=FALSE, row.names=TRUE, sep=',')
> library(XLConnect)
> wb=loadWorkbook("../data/macnally.xlsx")
> macnally=readWorksheet(wb,sheet="Sheet1",header=TRUE)
> head(macnally)
LOCATION HABITAT GST EYR
1 Reedy Lake Mixed 3.4 0.0
2 Pearcedale Gipps.Manna 3.4 9.2
3 Warneet Gipps.Manna 8.4 3.8
4 Cranbourne Gipps.Manna 3.0 5.0
5 Lysterfield Mixed 5.6 5.6
6 Red Hill Mixed 8.1 4.1
> ##OR
> library(gdata)
> macnally<- read.xls('../data/macnally.xlsx',sheet='Sheet1',header=TRUE)
> head(macnally)
LOCATION HABITAT GST EYR
1 Reedy Lake Mixed 3.4 0.0
2 Pearcedale Gipps.Manna 3.4 9.2
3 Warneet Gipps.Manna 8.4 3.8
4 Cranbourne Gipps.Manna 3.0 5.0
5 Lysterfield Mixed 5.6 5.6
6 Red Hill Mixed 8.1 4.1
> library(XLConnect)
> wb=loadWorkbook("../data/macnally1.xlsx", create=TRUE)
> createSheet(wb, name='MacNally')
> writeWorksheet(wb, macnally, sheet='MacNally')
> saveWorkbook(wb)
> save(MACNALLY, file='../data/macnally.RData')
> #calculate the mean GST
> meanGST <- mean(MACNALLY$GST)
> #display the mean GST
> meanGST
> #save the MACNALLY data frame as well as the mean GST object
> save(MACNALLY, meanGST, file='macnallystats.RData')
> load(file='../data/macnally.RData')
save()
and load()
statements regularly
`` `{r prepareData, cache=TRUE} VAR3 <- 1:100 `` `
`` `{r processData, cache=TRUE, dependson=prepareData} mean(VAR3) `` `
> dump('MACNALLY','')
MACNALLY <-
structure(list(HABITAT = structure(c(4L, 3L, 3L, 3L, 4L, 4L,
4L, 4L, 5L, 2L, 5L, 5L, 4L, 4L, 5L, 4L, 4L, 4L, 4L, 2L, 2L, 4L,
4L, 3L, 1L, 4L, 4L, 4L, 6L, 6L, 6L, 6L, 1L, 1L, 4L, 1L, 2L), .Label = c("Box-Ironbark",
"Foothills Woodland", "Gipps.Manna", "Mixed", "Montane Forest",
"River Red Gum"), class = "factor"), GST = c(3.4, 3.4, 8.4, 3,
5.6, 8.1, 8.3, 4.6, 3.2, 4.6, 3.7, 3.8, 5.4, 3.1, 3.8, 9.6, 3.4,
5.6, 1.7, 4.7, 14, 6, 4.1, 6.5, 6.5, 1.5, 4.7, 7.5, 3.1, 2.7,
4.4, 3, 2.1, 2.6, 3, 7.1, 4.3), EYR = c(0, 9.2, 3.8, 5, 5.6,
4.1, 7.1, 5.3, 5.2, 1.2, 2.5, 6.5, 6.5, 9.3, 3.8, 4, 2.7, 3.3,
2.6, 3.6, 5.6, 4.9, 4.9, 9.7, 2.5, 0, 3.1, 7.5, 0, 0, 0, 0, 1.1,
0, 1.6, 2.2, 2.9)), .Names = c("HABITAT", "GST", "EYR"), class = "data.frame", row.names = c("Reedy Lake",
"Pearcedale", "Warneet", "Cranbourne", "Lysterfield", "Red Hill",
"Devilbend", "Olinda", "Fern Tree Gum", "Sherwin", "Heathcote Ju",
"Warburton", "Millgrove", "Ben Cairn", "Panton Gap", "OShannassy",
"Ghin Ghin", "Minto", "Hawke", "St Andrews", "Nepean", "Cape Schanck",
"Balnarring", "Bittern", "Bailieston", "Donna Buang", "Upper Yarra",
"Gembrook", "Arcadia", "Undera", "Coomboona", "Toolamba", "Rushworth",
"Sayers", "Waranga", "Costerfield", "Tallarook"))
> dump('MACNALLY','')
> DATA <- data.frame(LOCATION=gl(3,2,6, paste('Location',1:3)),
+ TREATMENT = gl(2,3,6, LETTERS[1:2]),
+ Y=rnorm(6,10,2)
+ )
> DATA
LOCATION TREATMENT Y
1 Location 1 A 8.158481
2 Location 1 A 8.144742
3 Location 2 A 9.969023
4 Location 2 B 9.726616
5 Location 3 B 8.067003
6 Location 3 B 10.797749
Your turn
> str(DATA)
'data.frame': 6 obs. of 3 variables:
$ LOCATION : Factor w/ 3 levels "Location 1","Location 2",..: 1 1 2 2 3 3
$ TREATMENT: Factor w/ 2 levels "A","B": 1 1 1 2 2 2
$ Y : num 8.16 8.14 9.97 9.73 8.07 ...
Remove individual vectors
> LOCATION
Error in eval(expr, envir, enclos): object 'LOCATION' not found
> DATA$LOCATION
[1] Location 1 Location 1 Location 2 Location 2 Location 3 Location 3
Levels: Location 1 Location 2 Location 3
> with(DATA, LOCATION)
[1] Location 1 Location 1 Location 2 Location 2 Location 3 Location 3
Levels: Location 1 Location 2 Location 3
All this is foundation is awesome…
If only we knew how to summarise and plot all of these data….