Preparations

Load the necessary libraries

library(tidyverse)
## Loading tidyverse: ggplot2
## Loading tidyverse: tibble
## Loading tidyverse: tidyr
## Loading tidyverse: readr
## Loading tidyverse: purrr
## Loading tidyverse: dplyr
## Conflicts with tidy packages ----------------------------------------------
## filter(): dplyr, stats
## lag():    dplyr, stats

Scenario

Read in the data

owls = read_csv('data/owls.csv', trim_ws=TRUE)
## Parsed with column specification:
## cols(
##   Nest = col_character(),
##   FoodTreatment = col_character(),
##   SexParent = col_character(),
##   ArrivalTime = col_double(),
##   SiblingNegotiation = col_integer(),
##   BroodSize = col_integer(),
##   NegPerChick = col_double()
## )
glimpse(owls)
## Observations: 599
## Variables: 7
## $ Nest               <chr> "AutavauxTV", "AutavauxTV", "AutavauxTV", "...
## $ FoodTreatment      <chr> "Deprived", "Satiated", "Deprived", "Depriv...
## $ SexParent          <chr> "Male", "Male", "Male", "Male", "Male", "Ma...
## $ ArrivalTime        <dbl> 22.25, 22.38, 22.53, 22.56, 22.61, 22.65, 2...
## $ SiblingNegotiation <int> 4, 0, 2, 2, 2, 2, 18, 4, 18, 0, 0, 3, 0, 3,...
## $ BroodSize          <int> 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5...
## $ NegPerChick        <dbl> 0.8, 0.0, 0.4, 0.4, 0.4, 0.4, 3.6, 0.8, 3.6...

Exploratory data analysis

Model formula: \[ y_i \sim{} \mathcal{Pois}(\lambda_i)\\ ln(\lambda_i) =\boldsymbol{\beta} \bf{X_i} + \boldsymbol{\gamma} \bf{Z_i} \]

where \(\boldsymbol{\beta}\) and \(\boldsymbol{\gamma}\) are vectors of the fixed and random effects parameters respectively and \(\bf{X}\) is the model matrix representing the overall intercept and effects of food treatment, sex of parent, arrival time (and various interactions) on the number of sibling negotiations. Brood size was also incorporated as an offset. \(\bf{Z}\) represents a cell means model matrix for the random intercepts associated with individual nests.

Fit the model

Model validation

Model investigation / hypothesis testing

Predictions

Summary figures

References