Load the necessary libraries
library(tidyverse)
## Loading tidyverse: ggplot2
## Loading tidyverse: tibble
## Loading tidyverse: tidyr
## Loading tidyverse: readr
## Loading tidyverse: purrr
## Loading tidyverse: dplyr
## Conflicts with tidy packages ----------------------------------------------
## filter(): dplyr, stats
## lag(): dplyr, stats
Loyn (1987) modeled the abundance of forest birds with six predictor variables (patch area, distance to nearest patch, distance to nearest larger patch, grazing intensity, altitude and years since the patch had been isolated).
Format of loyn.csv data file
ABUND | DIST | LDIST | AREA | GRAZE | ALT | YR.ISOL |
---|---|---|---|---|---|---|
.. | .. | .. | .. | .. | .. | .. |
ABUND | Abundance of forest birds in patch- response variable |
DIST | Distance to nearest patch - predictor variable |
LDIST | Distance to nearest larger patch - predictor variable |
AREA | Size of the patch - predictor variable |
GRAZE | Grazing intensity (1 to 5, representing light to heavy) - predictor variable |
ALT | Altitude - predictor variable |
YR.ISOL | Number of years since the patch was isolated - predictor variable |
The aim of the analysis is to investigate the effects of a range of predictors on the abundance of forest birds.
loyn = read_csv('data/loyn.csv', trim_ws=TRUE)
## Parsed with column specification:
## cols(
## ABUND = col_double(),
## AREA = col_double(),
## YR.ISOL = col_integer(),
## DIST = col_integer(),
## LDIST = col_integer(),
## GRAZE = col_integer(),
## ALT = col_integer()
## )
glimpse(loyn)
## Observations: 56
## Variables: 7
## $ ABUND <dbl> 5.3, 2.0, 1.5, 17.1, 13.8, 14.1, 3.8, 2.2, 3.3, 3.0, 2...
## $ AREA <dbl> 0.1, 0.5, 0.5, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0,...
## $ YR.ISOL <int> 1968, 1920, 1900, 1966, 1918, 1965, 1955, 1920, 1965, ...
## $ DIST <int> 39, 234, 104, 66, 246, 234, 467, 284, 156, 311, 66, 93...
## $ LDIST <int> 39, 234, 311, 66, 246, 285, 467, 1829, 156, 571, 332, ...
## $ GRAZE <int> 2, 5, 5, 3, 5, 3, 5, 5, 4, 5, 3, 5, 2, 1, 5, 5, 3, 3, ...
## $ ALT <int> 160, 60, 140, 160, 140, 130, 90, 60, 130, 130, 210, 16...
Model formula: \[ y_i \sim{} \mathcal{N}(\mu_i, \sigma^2)\\ \mu_i = \boldsymbol{\beta} \bf{X_i} \]
where \(\boldsymbol{\beta}\) is a vector of effects parameters and \(\bf{X}\) is a model matrix representing the additive effects of the scaled versions of distance (ln), distance to the nearest large patch (ln), patch area (ln), grazing intensity, year of isolation and altitude on the abundance of forest birds.
Loyn, R. H. 1987. “Nature Conservation: The Role of Remnants of Native Vegetation.” In, edited by D. A. Saunders, G. W. Arnold, A. A. Burbridge, and A. J. M. Hopkins. Chipping Norton, NSW: Surrey Beatty & Sons.