Virtually unbound measurements (weight, lengths etc)
\(f(x\mid\mu, \sigma^2) = \frac{1}{\sqrt{2\sigma^2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}\)
Presence/absence and data bound to the range [0,1]
\(f(k\mid n, p) = \binom{n}{p}p^k(1-p)^{n-k}\)
Count data (or count derivatives - like low densities)
\(f(x\mid \lambda) = \frac{e^{-\lambda}\lambda^x}{x!}\)
Count data (or count derivatives - like low densities)
\(f(x\mid \mu, \omega) = \frac{\Gamma(x + \omega)}{\Gamma(\omega)x!}\times\frac{\mu^x\omega^\omega}{(\mu + \omega)^{\mu+\omega}}\)
\[\underbrace{E(Y)}_{Link~~function} = \underbrace{\beta_0 + \beta_1x_1~+~...~+~\beta_px_p}_{Systematic} + \varepsilon, ~~\varepsilon\sim Dist(...)\]
\[\underbrace{E(Y)}_{Link~~function} = \underbrace{\beta_0 + \beta_1x_1~+~...~+~\beta_px_p}_{Systematic}~~\underbrace{~+~e}_{Random}\]
\[\underbrace{E(Y)}_{Link~~function} = \underbrace{\beta_0 + \beta_1x_1~+~...~+~\beta_px_p}_{Systematic}~~\underbrace{~+~e}_{Random}\]
Response variable | Probability distribution | Link function | Model name |
---|---|---|---|
Continuous measurements | Gaussian |
identity: \(\mu\) | Linear regression |
Binary | Binomial |
logit: \(log\left(\frac{\pi}{1-\pi}\right)\) | Logistic regression |
probit: \(\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\alpha+\beta.X} exp\left(-\frac{1}{2}Z^2\right)dZ\) | Probit regression | ||
Complimentary log-log: \(log(-log(1-\pi))\) | Logistic regression | ||
Counts | Poisson |
log: \(log \mu\) |
Poisson regression log-linear model |
Negative binomial | \(log\left(\frac{\mu}{\mu+\theta}\right)\) | Negative biomial regression | |
Quasi-poisson | \(log\mu\) | Poisson regression |
\(f(x\mid\mu, \sigma^2) = \frac{1}{\sqrt{2\sigma^2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}\)
\(ln\mathcal{L}(\mu, \sigma^2) = -\frac{n}{2}ln(2\pi)-\frac{n}{2}ln\sigma^2-\frac{1}{2\sigma^2}\sum^2_{i=1}(x_i-\mu)^2\)
Maximum likelihood estimates:
\(\hat{\mu} = \bar{x} = \frac{1}{n}\sum^n_{i=1}x_i\)
\(\hat{\sigma}^2 = \frac{1}{n}\sum^n_{i=1}(x_i-\bar{x})^2 \)